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Patients with rare diseases often experience prolonged diagnostic delays. Ordering appropriate
genetic tests is crucial yet challenging, especially for general pediatricians without genetic expertise.
Recent American College of Medical Genetics (ACMG) guidelines embrace early use of exome
sequencing (ES) or genome sequencing (GS) for conditions like congenital anomalies or
developmental delayswhile still recommendgene panels for patients exhibiting strongmanifestations
of a specific disease. Recognizing the difficulty in navigating these options, we developed a machine
learning model trained on 1005 patient records from Columbia University Irving Medical Center to
recommend appropriate genetic tests based on the phenotype information. The model achieved a
remarkable performancewith anAUROCof 0.823andAUPRCof 0.918, aligning closelywith decisions
made by genetic specialists, and demonstrated strong generalizability (AUROC:0.77, AUPRC: 0.816)
in an external cohort, indicating its potential value for general pediatricians to expedite rare disease
diagnosis by enhancing genetic test ordering.

Individuals with rare diseases often endure a long diagnostic odyssey,
filled with an average of 25 examination appointments with specialists1,
and potential misdiagnoses, resulting in anxiety, financial strain, and
missed treatment opportunities as their condition progresses2–4. A
significant portion of rare diseases (50–75%) present initially in
children5, with approximately 80% of rare diseases having a genetic
etiology6. A genetic diagnosis is essential to understanding the cause
and expected natural history of the condition, avoiding unnecessary
testing, optimizing management, and facilitating appropriate support
systems7,8.

The standard genetic testing process for suspected genetic disorders
follows a stepwise approach9, depicted in Fig. 1. For example, patients with
developmental disabilities undergo Chromosomal Microarray (CMA) and
Fragile X syndrome testing as the first-tier tests. If these fail to diagnose, the
second-tier tests, which include targeted single-gene tests or gene panels are
used based on clinical symptoms to identify underlying genetic variations. If
these also prove inconclusive,Whole Exome orWholeGenome Sequencing

(ES/EG), known for their higher diagnostic yields but at higher costs, might
be used as the third-tier tests.

Alternative testing strategies using ES/GS at different diagnostic stages
have been developed. Several cost-effectiveness analyses9–11 indicate that
employing ES/GS directly is more economical for certain conditions.
According to the latest American College of Medical Genetics and Geno-
mics (ACMG) guidelines, ES/GS is recommended for conditions like con-
genital abnormalities and developmental disorders10,12. Despite ES/GS
having higher yield in detecting pathogenic variants, there are challenges
such as interpreting large amounts of data, managing incidental findings
unrelated to the primary diagnosis butmedically actionable13,14, inconsistent
insurance coverage, and long turnaround times averaging 18weeks15,16. This
suggests that well-covered specific disease focused gene panels are more
suitable when the phenotypes clearly indicate an underlying genetic disease
with a defined set of genes. Recognizing these challenges, the ACMG
guidelines17 recommend that patients with a high likelihood of a specific
genetic disorder should first undergo targeted testing or gene panels.
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Consequently, decidingwhether to use ES/GS or gene panels as thefirst
test is becoming a crucial and complex, case-by-case decision for clinicians,
particularly when there is strong suspicion of a genetic basis for the condi-
tion. This is especially challenging for general pediatricians, who usually do
not have specialized training in genetics and do not routinely order genetic
testing. As clinical guidelines increasingly lean towards recommending ES/
GS as a diagnostic test for conditions with long and ill-defined genetic
differentials, pediatricians face growing challenges in navigating these
options in everyday practice18. As a result, most general pediatricians refer
patients to geneticists, delaying the timely ordering of crucial tests (Fig. 1).

In light of this, the study aims to develop a machine learning model
(Phen2Test) that uses patient phenotypes documented in electronic health
records (EHRs) to predict whether an experienced specialist will directly
order ES/GS, bypassing the need for a gene panel test. Trained with data
from specialists knowledgeable in genetic test ordering, this model is
designed to assist general pediatricians and other physicians who have
limited experience in genetics in choosing the appropriate testing strategy.

Results
Data Characteristics
Table 1 showed the demographics of the three cohorts. In the curated cohort
(n = 1005), 37.1% were white. Initially, there were 570 individuals

recommended for ES/GS and 435 for gene panels. The subcategories of gene
panelsweredescribed inSupplementaryData1. 139 individualswere shifted
to the ES/GS group according to guideline-adjusted outcomes. The mean
ages of the patients recommended for ES/GSwere 4.88,while themean ages
of the gene panel group were older (5.88). The age difference was also
observed in the phenotyping-based cohort (n = 6458), with a mean age of
around 5.56 years in ES/GS group and 10.05 years in the panel group. It is
important to note that in the phenotyping-based cohort, based on the
extraction results, the number of panel cases (n = 3427) exceeded the
number of ES/GS cases (n = 3031). In the CHOP cohort (n = 997), 537
patients were recommended for ES/GS directly, and 460 patients were
suggested for gene panels at first, but 55 were later escalated for ES/GS. The
mean ages of the CHOP cohort were older (mean age: 10.05 for ES/GS and
10 for Panel) than the Columbia cohort. The other demographics dis-
tributions, such as gender and race, were similar in both CUIMC and
CHOP data.

Model optimization
After experimenting with different feature sets and sampling strategies, the
model achieving the highest average AUPRC (0.918, std: 0.023) was Ran-
dom Forest built on features including phecodes aggregated by frequency
derived from structured data, demographics characteristics and the number

Fig. 1 | Genetic testing pathway for patients with suspected genetic disorders.
Conventionally, General pediatricians would refer to genetic specialists to evaluate
and order tests, which delays the overall diagnosis. Instead, they could directly make
the decisions to expedite the diagnosis process. However, physicians with limited

genetic expertise often encounter difficulty in navigating the two options between
single gene test/targeted gene panels and exome sequencing (ES)/genome sequen-
cing (GS). Our model aims to support this decision by predicting a geneticist’s
decision.
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of notes. It applied class weight adjustments to address class imbalance and
did not perform feature reduction. Phecode-based feature sets yielded better
performance comparedwith featuresderived fromHPOontology, as shown
in Table 2. Additionally, we did not perceive a meaningful gain in the
performance while leveraging phenotypes extracted from both structured
data and narrative notes. The ROC curve (the highest average AUROC
0.823, std: 0.045) andprecision-recall curve for three classifiers trainedusing
the optimal feature set were depicted in Fig. 2a. The performance of all
trained models across various features, strategies and classifiers were sum-
marized in Supplementary Data 2.

The top 10 important phenotypes and HPO phenotype categories
in our optimal model were visualized in Fig. 2b, c. Systems of phenotypic
abnormalities significantly (p-value < 0.05) and positively correlated
with ES/GS ordering included nervous system, genitourinary system
abnormality, and birth abnormality, whereas abnormality of the

digestive system showed a negative correlation (Supplementary Data 3).
Furthermore, phenotypes significantly enriched in phecode sets inclu-
ded neurological, mental disorders, metabolic, sense organs, and der-
matologic (see Supplementary Data 4 for the complete list). Overlap was
observed between top important HPO phenotypic abnormalities
(abnormality of nervous system, integument, ear, and metabolic) and
identified significant phecode sets (neurological, dermatologic, sense
organ, endocrine/metabolic).

Internal evaluation and baseline assessment
The performance (AUROC, AUPRC) distribution of Phen2Test, eval-
uated under two reference standards, was depicted in Fig. 3b. The
average AUROC and AUPRC were 0.916 (95% CI: 0.911–0.921) and
0.962 (95% CI: 0.959–0.964), respectively, when the standard was based
on a genetic expert’s decisions. The model performance was similar

Table 1 | Demographics characteristics of initial manually curated and larger phenotyping-based cohorts

Demographics Characteristics Clinicians–Curated Genetic
Cohort (n = 1005)

EHR Phenotyping-based
Cohort (n = 6458)

Children’s Hospital of
Philadelphia
Cohort (n = 997)

Total

ES/GSa Panela ES/GSb Panelb ES/GSc Panelc

Self-reported Race

White 271 (227) 102 (146) 1447 1642 384 244 4090

Black or African American 79 (58) 34 (55) 344 363 69 63 952

Asian 30 (25) 9 (14) 116 78 26 27 286

Other (e.g., American Indians or
Alaska nation)

2 (2) 4 (4) 504 42 - - 552

Not described 176 (139) 79 (116) 42 592 88 46 1023

Decline or not specified 151 (119) 68 (100) 578 710 25 25 1577

Sex

Male 452 (362) 169 (259) 1687 1502 347 219 4376

Female 257 (208) 127 (176) 1342 1924 245 186 4081

Other - - 2 1 - - 3

Age at the index date

Mean age ± Std 4.88 ± 4.87
(4.92 ± 5.00)

5.88 ± 5.91
(5.50 ± 5.46)

5.56 ± 5.53 10.05 ± 6.09 10.52 ± 6.16 10 ± 6.23 -

Median age 3.48 (3.46) 3.65 (3.61) 5.27 10.87 8.74 7.79 -

0–5 443 (359) 165 (249) 1470 914 83 103 3178

5–10 140 (103) 52 (89) 722 675 261 143 1993

10–15 93 (79) 47 (61) 505 837 120 71 1673

>= 15 33 (29) 32 (36) 334 1001 128 88 1616

Total cases 709 (570) 296 (435) 3,031 3,427 592 405 8460

ES/GS whole-exome/whole-genome sequencing, Panel gene panel.
aData collected from Columbia University Irving Medical Center (CUIMC). Genetic testing outcomes curated by clinicians, followed by the outcome counts after adjustment (statistics before adjustment).
bData collected from Columbia University Irving Medical Center (CUIMC). Genetic testing outcomes extracted from clinical narrative notes based on phenotyping approach.
cData collected from Children’s Hospital of Philadelphia (CHOP), served as the external testing dataset for the algorithm. Genetic testing outcomes were curated by clinicians.

Table 2 | Average performances across different feature sets based on the held-out testing sets in the initial cohort after
outcome adjustment

Feature Sets Feature Dimension Average AUROC Average AUPRC

Phecodes [structured] + Demographics 1228 0.831 ± 0.040 0.917 ± 0.022

HPO + Demographics 26 0.737 ± 0.051 0.852 ± 0.042

Phecodes [unstructured] + Demographics + note counts 422 0.803 ± 0.049 0.90 ± 0.025

Phecodes [structure] + Demographics + note counts 1229 0.823 ± 0.045 0.918 ± 0.023

HPO + Demographics + note counts 27 0.736 ± 0.054 0.864 ± 0.035

Phecodes [structure and unstructured] + Demographics + note counts 1297 0.838 ± 0.052 0.917 ± 0.028
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Fig. 2 | Model optimization and feature importance visualization. a Receiver
operating characteristic (ROC) Curve (left) and Precision-recall Curve (right)
derived from the Initial Curated Testing Cohort. Receiver operating characteristic
(ROC) curves and Precision-Recall curves were used to illustrate the performances
of the optimal feature sets across three classifiers on the held-out testing dataset from
the initial cohort. The shaded area represents the confidence interval calculated from

1000 iterative results. The top 10 feature importance scores calculated by Gini
impurity for both (b) Phecodes (n = 1225), and (c) HPO phenotypic abnormalities
(n = 23). Two radar charts illustrate the proportion of (d) the top 10 HPO pheno-
typic abnormalities, and (e) Phecodes within two different groups: whole-exome
sequencing/whole-genome sequencing (WES/WGS) and panel.
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against the guideline-adjusted evaluation standard, where the average
AUROC was 0.947 (95% CI: 0.943–0.951) and AUPRC was 0.972 (95%
CI: 0.969–0.979). Furthermore, we compared the model with a general
pediatrician who does not order genetic tests routinely. When we switch
the ‘not sure’ decisions (n = 2) to ‘ES/GS’ (or ‘gene panels’), the average

accuracy for a general pediatrician becomes, 0.44 (or 0.56) and 0.598
(or 0.588) in the expert-determined and outcome-adjusted standard,
respectively. In contrast, the average accuracy of Phen2Test was 0.838
and 0.795, significantly higher (p < 0.001) than a general pediatrician’s
performance (Fig. 3c).

Fig. 3 | Results of internal evaluation and baseline assessment. a In addition to
evaluating the algorithm on the entire testing cohort, we curated two specific subsets
for further validation: Cexp (n = 48) and Cbase (n = 20). Cexp was reassessed by a
genetic specialist, andCbase was randomly selected fromCexp cohort. Two evaluation
standardswere applied in these two cohorts.bThe bootstrap performance (AUROC,
AUPRC) of Phen2Test model evaluated on cohort Cexp under two standards:

guideline-adjusted and expert-determined outcomes. c The performance compar-
ison between themodel and a general pediatrician (assuming the 2 unknowns as ES/
GS) in determining the genomic tests based on phenotypic manifestation. The bars
in (c) represented the average performance of the bootstrap samples in Cbase, with
the error bar indicating standard deviation of the mean. *p < 0.05,
**p < 0.01, ***p < 0.001.
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External Validation
Phen2Test was applied to an external cohort (n = 997) with data char-
acteristics documented in Table 1. An overall AUROC of 0.77 and
AUPRC of 0.816 were achieved on the CHOP cohort (Fig. 4a), with
around a 5% decline in AUROC and an 10% reduction in AUPRC when
compared with the CUIMC initial testing cohort. However, Phen2Test
evaluated on CHOP data outperformed the CUIMC EHR Phenotyping-
based cohort (Fig. 4b). Figure 4a showed improvement in both AUROC
and AUPRC when comparing across two time periods: 2016-2019 and
2020-2021, with theAUPRC increasing from0.807 in 2016–2019 to 0.820
in 2020–2021.

Sensitivity analysis
The average accuracy is lower (0.718 AUROC; 0.671 AUPRC) when eval-
uated on the EHR-based cohort. As our model was trained based on the
outcomes assigned according to the current guideline, we observed a dis-
cernible trend of performance improvement as the time approached more
recent dates, with the AUROC increasing from 0.68 in 2012 to 0.76 in 2020
(Fig. 4b). The drop in performance post-2021 was likely caused by shifts in
healthcare behavior due to the pandemic which significantly disrupted
traditional clinical practices19.

We examined the performance disparity in different subgroups cate-
gorized under self-reported race, sex, and age groups (Fig. 4c, detailed in
Supplementary Data 5). The model performance remained stable when
assessedacrossdifferent demographic subsets,with lowvariance ofAUROC
and AUPRC within each of the three testing sets (Fig. 4d) among the
subgroups.

Cost-effectiveness analysis
A brief cost-benefit analysis was conducted to better understand and
showcase the clinical utility of Phen2Test. We compared the potential costs
of the test recommendationmade by Phen2Test and two clinical choices: 1)
always select targeted gene panels first and transit to ES/GS when negative
results are found (tiered approach), 2) directly opt for ES/GS. The diagnostic
yield of target gene panels in non-consanguineous population ranges
between 25–45%11,20,21. In our analysis, we usedadiagnostic yield rate of 40%
to estimate costs. The prices for genetic tests were referenced fromBlueprint
Genetics (GTR Lab ID: 500188). The average price of gene panels was
estimated to be $1600, and the average price of ES/GS was estimated to be
$3250. Under such diagnostic yield and average prices, at the present time
evaluated under the CHOP institution with a prediction threshold set as 0.5
and assuming geneticists always select the optimal testing sequence,
Phen2Test yields an expected savings of $236 in testing cost per patient
compared to the ES/GS-only approach and $536 relative to the tiered
approach (Table 3). An interactive web demo was published online, which
allows users tomanipulate parameters such as input prices, diagnostic yield
rates, and test preferences. It dynamically reflects the total costs for each
scenario.

Discussion
Clinical manifestation has been consistently leveraged to facilitate rare
disease diagnosis. One of the applications is to better assist interpretation of
candidate variants yielded from the sequencing results. For example,
bioinformatics tools such as Exomiser22, VarElect23, Phenolyzer24, and
Phen2Gene25 have been developed to providemore comprehensive variants
interpretation. Also, those tools can be used to design virtual gene panels
(with ES/GS as the backbone) by considering the phenotype-genotype
relationships26. Subsequently, researchers have explored additional aspects
of utilizing phenotypes to support clinical decisions at various stages of the
rare disease diagnosis process. For example, a previous studyhas shown that
shared phenotypes among patient groups can be leveraged to identify
individuals likely to benefit from CMA testing with relatively high
accuracy27. As ES/GS becomes more prevalent, our study further supports
the genetic test ordering process by providing personalized test ordering
recommendations based on patients’ phenotypes. Our findings contribute

to a future workflow for systematically using EHR-based phenotypic fea-
tures for rare disease diagnosis.

Phen2Test achieved the highest performance using features from
structured billing codes (converted to Phecodes) and demographics. While
detailed HPO terms offer refined phenotypic descriptions, beneficial for
variant interpretation and identifying causal variants, we did not pursue this
due to the resource-intensive nature of manual extraction and the limited
accuracy of automated NLP approaches28–30. Our analysis showed no per-
formance improvement when extracting HPO phenotypes from relevant
notes using a context-aware query approach31. Although our keyword-
based approach is basic, it serves as a proof of concept for using phenotypic
information to guide genetic test selection. Future studies might consider
transformer-based algorithms30,32,33 to enhance recognition of HPO or non-
HPO concepts from narrative notes34.

The lack of improvement using narratives might be due to the sim-
plicity of our phenotype extraction algorithm, or essential information for
predicting genetic test ordering is already effectively summarized in struc-
tured data (as conditions). Individuals who benefit most from ES/GS are
likely to showabnormalities acrossmultiple systems35,which canbe inferred
from the ICD codes. Furthermore, our recommendation aligned with
established clinical guidelines, such as recommending ES/GS for conditions
like multiple congenital anomalies, autism, and developmental delay, all of
which are likely to be summarized within the structure data.

ES/GSwas initially introduced into the clinical settings in 201236, a time
when both clinical application and supporting evidence were limited37. As
clinical guidelines evolved, more physicians began to incorporate ES/GS
into their diagnostic workup. Our model, adjusted for the latest guidelines,
effectively reflected this temporal trend – exhibiting improved performance
in more recent cohorts. This underscores its potential as a component of a
learning health system38, capable of direct training using the EHR data,
facilitating the dynamic updating of clinical guidelines, and consequently
offering decision support to general pediatricians. Moreover, while ES/GS
has been used for newborn screening39, the limited phenotypes present at
birth challenge the data analysis at prenatal or neonatal stages40. Re-
analyzing sequencing data as knowledge evolves is beneficial26,41, though the
appropriate timing is unclear42. Phen2Test is primarily designed for the
selection of genomic/genetic tests based on the latest EHR data, which can
also identify the optimal timing for re-analysis by examining the latest
phenotypes, aiding in the selection of virtual panels and ES/GS.

Several concernsmust be addressed before deploying this system into a
routine clinical workflow. First, we observed a higher ratio of ES/GS in our
cohorts, likely due to the high-resource settings of the study. Hence, it is
essential to acknowledge that the system’s generalizability may be limited
when applied to lower-resource healthcare systems, as the training data
might not accurately represent the true distribution within the intended
cohort. Unfortunately, this challenge is a pervasive limitation encountered
inmanymachine learning or AI-based approaches, where models are often
trained within high-resource academic centers but are increasingly sought
after in low-resource clinical settings, such as rural pediatric clinics43. While
our simple billing-code-based feature engineering may help adaptability,
addressing this imbalance remains crucial. Additionally, Phen2Test lacks
the capacity to incorporate facial photos and videos, which could enhance
multi-modal decision support. Furthermore, financial costs and resource
availability are also relevant factors in the real-world decision-making
process18,44 but are not accounted for currently. While Phen2Test’s perfor-
mance alignswellwith genetic specialists, general pediatriciansmay still lack
the confidence touse it for ordering tests. Inpractice, theymayprefer to refer
patients to geneticists, causing inevitable delays in diagnosis due to long
waiting times for appointments. Integrating retrospectively validated
models into frontline clinical practice remains a sociotechnical challenge.
On the other hand, payer barriers have limited the clinical use of ES/GS for
patients with suspected genetic diseases45,46, with reimbursement sometimes
beingdenied47.AlthoughPhen2Test canprovidemoreobjectivedecisions to
justify the need for specific genetic tests, it remains uncertain how willing
payers are to accept AI-supported orders.
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Fig. 4 | Phen2Test external evaluation and sensitivity analysis. The area under
receiver operator characteristics curve (AUROC) and precision-recall curve
(AUPRC) divided by calendar years were shown for (a) Children’s Hospital of
Philadelphia, and (b) CUIMC EHR-phenotyping based cohort. c The AUROC and

AUPRC of each subgroup divided by self-reported race, sex and age categories were
represented in dotted points, with the bar represented as the mean, error bar
representing standard deviation of the mean. d Heatmap visualization of the per-
formance variability for demographic subgroups.
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This retrospective study develops andvalidates an accurate phenotype-
driven approach to identify suitable molecular genetic tests needed to
diagnose rare pediatric disorders for clinicians with minimal knowledge
about genetic tests. The model’s performance is comparable to that of
genetic specialists.More studies arewarranted to test the effectiveness of this
approach prospectively in clinical settings and the generalizability to dif-
ferent EHR systems.

Methods
The study developed binary classification models that use phenotypic fea-
tures extracted from the EHR as inputs. The outcomes determine whether
ES/GS (positive) should be ordered directly or gene panels (negative) should
be considered first. Figure 5 provides an overview of the study design, with
further details elaborated in subsequent sections.

Ethical statement
The study received ethical approval from Columbia University Irving
Medical Center Institutional Review Board (protocol number: AAAR3954)
and Children’s Hospital of Philadelphia Institutional Review Board (pro-
tocol number: 18-015712). This EHR-based research was determined by
ColumbiaUniversity IrvingMedical Center Institutional ReviewBoard and
Children’sHospital of Philadelphia Institutional ReviewBoard to qualify for
a waiver of consent as per 45CFR46.116(d) as the following criteria are met
in this study:

The research involves nomore thanminimal risk to the subjects. The
research involves analysis of existing data only, and the risk from this
research is minimal. There is a risk that participants could be harmed in
the unlikely event that information was disclosed outside the study in an
identifiable way. We will take multiple measures to protect the privacy
and confidentiality of all involved participants, and to minimize the risks
associated with possible distress and burden. All data analysis will be
performed in secure and CUIMC-approved servers, and we will safe-
guard the data sets to ensure the privacy of the patients, and to eliminate
the risks of data leak.

The waiver or alteration will not adversely affect the rights and
welfare of the subjects. The waiver will not adversely affect the rights
and welfare of the study participants, because the analysis is based on
existing data without any new data collection. Additionally, the data will
not be released, and strict confidentiality will be maintained.

The research could not practicably be carried outwithout thewaiver
or alteration. The research involves retrospective analysis of existing
phenotype data of a large number of patients. Without the waiver, this
analysis cannot be carried out.

Whenever appropriate, the subjects will be providedwith additional
pertinent information after participation. The subjects will be provided
with relevant information on refined phenotype analysis of the raw
clinical phenotype information. When requested, publications resulting
from the proposed study will also be shared to study participants.

Data collection and outcome preprocessing
To train amodel that helps general pediatricians select appropriate testing
strategies without referring to genetic specialists, the intuition here is to
align the model’s prediction outcomes with genetic specialists’ decisions.
We therefore collected genetic test orders on patients seen by geneticists at
Columbia University Irving Medical Center’s (CUIMC) Department of
Pediatrics between 2012 and 2023. We excluded genetic tests with non-
diagnostic purposes, CMA-only cases, and patients aged 19 or older when
tests were ordered. The genetic test orders were categorized as (1) direct
ES/GS (positive), (2) gene panels only (negative), or (3) gene panels fol-
lowed by ES/GS. The third category was considered ‘positive’ in this study
because ES/GS was ultimately required to make the diagnosis. As the
ACMG guidelines evolve with new evidence, past test decisions may no
longer conformwith current standards, potentially leading to suboptimal
outcomes, such as low diagnostic yields and reduced cost-effectiveness.
We, therefore, adapted guideline-adjusted outcomes by adjusting the test
orders according to the ACMG recommended practice. We leveraged the
clinical summaries (Supplementary Table 1) as the basis to adjust the
labels. The summaries were manually crafted by clinicians and was not
used for model training. For instance, ES/GS was recommended as the
first-tier test for patients with congenital anomalies, developmental delay,
intellectual disability, neurological developmental disability (e.g., autism
spectrum disorder, attention-deficit/hyperactivity disorder)10,12, or
seizures48,49. If any of these phenotypic manifestations were found in the
patient clinical summaries, we would update the test order to ES/GS if the
initial order was a gene panel. Only those with well-established guidelines
were adjusted for the recommendation labels. Accordingly, therewere 139
patients with test order adjusted to ES/GS (Supplementary Table 2).
Finally, the guideline-adjusted outcomes were leveraged for model
training.

Feature engineering
Phenotypic features were extracted from both structured and unstructured
EHR data, focusing on features available before the index date. The index
date was defined as the earliest test order date or, if missing, the genetic
appointment visit date, assuming minimal delay between the two. The
feature extraction process is detailed below; refer to Supplementary Table 3
for a list of the extracted features.

Structured data
Condition concepts collected based on the Observational Medical Out-
comes Partnership (OMOP) common data model (CDM) were mapped to
corresponding phecodes (version 1.2)27,50–52. We utilized two methods to
aggregate phecodes per individual: (1) frequency of each phecode (Freq_-
phecodes) and (2) sum of unique phecodes (Sum_phecodes), counting
identical phecodes recorded on the same date only once. Alternatively,
OMOP condition concepts were mapped to Human Phenotype Ontology
(HPO)53 terms following our previously developed approach31, aggregating
them by phenotypic abnormality (e.g., musculoskeletal abnormalities). We
then counted each HPO-based organ system of phenotypic abnormality
(23 systems) as input features (Freq_HPO). Demographic characteristics
(sex, race, age) at the index date were also extracted.

Table 3 | Comparative cost analysis

Targeted Gene Panels ES/GS-only Our Model Prediction

Average price $1600 $3250 Not applicable

Total cost for 100 patients $355,000 $325,000 $301,400

Average cost per patient $3550 $3250 $3014

Expected savings per patient using our model $536 $236 Not applicable

The average prices for gene panels and ES/GSwere estimated based on Blueprint Genetics (https://blueprintgenetics.com/). Blueprint Genetics offers target gene panels priced between $1450 to $1750,
andwhole exome/genomic sequencing services range from $2500 to $4000. The gene panel diagnostic yield rate was set to 40% for the calculations. Follow-up and secondary findingmanagement costs
were not considered in this analysis. Phen2Test’s prediction accuracy was evaluated against the CHOP cohort, with a threshold set at 0.5 (assign to the class with higher predictive probability). The
interactive cost analysis demo was available at https://comparative-cost-demo-63ivhjau4u4r8436pyblbe.streamlit.app/.
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Unstructured data
We applied regular expressions to extract additional phenotypic features
from clinical narratives that matched with the 1755 phecode terms. Addi-
tionally, a trained model54 for negation and scope detection was utilized to

only include observed phenotypes. Features were aggregated using the same
aggregation methods previously described (Freq_phecodes_notes and
Sum_phecodes_notes). Previous findings55,56 suggested that the higher fre-
quency of clinical notes correlated with worse health, we therefore counted

Fig. 5 | Study overview. There are three main steps in constructing and optimizing
the models, which includes data preprocessing, feature engineering and model
training. During the data preprocessing stage, non-diagnostic purposes and indi-
viduals aged 19 and older at the index date were excluded. We adopted a guideline-
adjusted approach to systematically adjust test orders to align with latest ACMG
recommended practice. In step 2, we extracted features from both structured data

and narrative notes. In the end, 6 different feature sets were passed into 3 classifiers.
Each classifier was trained with optimized hyperparameters. The model with the
highest average AUPRC would be regarded as the best performing model
(Phen2Test), which would be used for the proceeding analysis. Four parts of analysis
were conducted, including both internal evaluation and external validation of
Phen2Test, sensitivity and cost-effectiveness analysis.
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all clinical notes documented before the index date (Num_notes) to reflect
indidivuals’ healthcare utilization.

Model training and optimization
We developed multiple feature sets and trained them using Logistic
Regression, Random Forest, and XGBoost classifiers. We conducted nested
cross-validation for hyperparameter tuning and model evaluation, using a
three-fold inner cross-validation on 80% of the data to select models with
best F1-scores, and further evaluated the model using the remaining 20%.
To address class imbalance,weused classweight adjustment, SMOTE57, and
random duplication of minority class data points. Furthermore, we per-
formed principal component analysis (PCA) to assess the impact of feature
reduction on model performance. The experiments were repeated in five
iterations and averaged performance metrics—precision, recall, F1-mea-
sure, area under the ROC curve (AUROC) and precision-recall curve
(AUPRC) were calculated. The model with the highest averaged AUPRC
(optimal) was used for further analysis.

We assessed feature importance in our optimal model using the Gini
impurity criterion. We also explored the relationship between phenotypic
abnormalities and test recommendations (ES/GS, panel) using ordinary
least squares (OLS) regression. Phenotypes were grouped into 17 categories
to examine system-level impacts on test choices using aChi-Square test. The
p-values were adjusted using Benjamin/Hochberg approach.We compared
these findings with the HPO ontology to identify discrepancies introduced
due to different vocabularies.

Internal validation and baseline assessment
Weassessed the optimalmodel in a subset Cexp (n = 48), randomly sampled
from the entire testing cohort (Fig. 3a). Two ground-truth evaluation
standards applied, (1) guideline-adjusted outcomes (as described above),
and (2) expert-determined outcomes, where a genetic counselor (PA)
conducted chart reviews for the Cexp cohort and provided genetic test
decisions (ES/GS, gene panel) according to current practices. The model’s
predictions were evaluated on the Cexp against both standards, with 95%
confidence intervals estimated using 200 bootstrap iterations.

Given the primary objective to support general pediatricians with
limited genetic expertise, we further conducted a comparison study by
establishing a baseline based on a general pediatrician’s decision. A pedia-
trician (RL) reviewed a cohort Cbase (n = 20), randomly sampled from the
Cexp cohort, and was asked to select the appropriate genetic test (not sure,
ES/GS, gene panel) based on the patient’s prior-to-index conditions and
demographics. The decisions were also evaluated against the two afore-
mentioned standards.

External validation
We used an independent cohort from the Children’s Hospital of Philadel-
phia (CHOP) to assess theportability andgeneralizabilityof ourmodel. This
dataset included 997 patients referred to CHOP clinical geneticists, con-
taining ICD-10 codes summarizing their conditions before encounters and
their genetic test orders. The same feature engineering procedures were
applied to prepare model inputs for validation. The trained model was
available on GitHub.

Sensitivity analysis: temporal effect and sub-group analysis
Wederived anEHR-based ‘genetic’ cohort from2012-2023, which included
patientswithvisits to genetic clinics, tests, ormeasurements (Supplementary
Data 6), excluding patients aged 19 or older at their appointment. Testing
outcomes were extracted by first identifying clinical notes containing key-
words like “genetic”, “letter”, “visit”, and “progress note” in their titles; and
then pinpointing notes with “exome”, “genomic”, “WES”, or “WGS as
positives (Supplementary Table 4). To refine the negatives, we excluded
non-genetic testing (e.g. biochemical panels). The outcome extraction
algorithmachieved an89%accuracy rate in identifying labels on apre-tested
cohort. Index dates were set as the dates when keywords were identified in
notes. Patients with both ES/GS and gene panel test orders were considered

positives, with the index at the earliest test order dates. The same feature
extraction pipeline of the optimal feature set was applied in this cohort. We
divided the cohort of 6458 individuals into four periods (2012–2014,
2015–2018, 2019–2021, and 2021–2023) to analyze temporal trends in
model performance. Similarly, we also investigated the temporal effects in
the external cohort. Model performances across different sub-populations
were also examined in all three testing cohorts.

Data availability
The clinical data used in this study contains Protected Health Information
(PHI) and, as such, cannot be made readily available for distribution.
Requests for access to the data will undergo review by the institutional IRB
(Institutional Review Board) for consideration.We provided synthetic data
(https://github.com/stormliucong/RARE-GOrder/tree/master/data_
preprocessing/demo_data) for users to better understand and execute the
training pipelines.

Code availability
The code and the final trained model utilized in this study are available on
GitHubat https://github.com/stormliucong/RARE-GOrder.The repository
provides a configuration file for users to setup the virtual environment with
the required Python packages installed to run the scripts. To avoid potential
errors caused by incompatibility, Python version above 3.9 is preferred.
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